The Tight Upper Bound for the Number of Matchings of Tricyclic Graphs
نویسندگان
چکیده
In this paper, we determine the tight upper bound for the number of matchings of connected n-vertex tricyclic graphs. We show that this bound is 13fn−4+16fn−5, where fn be the nth Fibonacci number. We also characterize the n-vertex simple connected tricyclic graph for which the bound is best possible.
منابع مشابه
Coverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملSharp Lower Bound for the Total Number of Matchings of Tricyclic Graphs
Let Tn be the class of tricyclic graphs on n vertices. In this paper, a sharp lower bound for the total number of matchings of graphs in Tn is determined.
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملNew results on upper domatic number of graphs
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012